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ABSTRACT 

The island model with stochastically variable migration rate and immigrant 
gene frequency is investigated. I t  is supposed that the migration rate and the 
immigrant gene frequency are independent of each other in  each generation, 
and each of them is independently and identically distributed in every genera- 
tion. The treatment is confined to a single diallelic locus without mutation. 
If the diploid population is infinite, selection is absent and the immigrant gene 
frequency is fixed, then the gene frequency on the island converges to the 
immigrant frequency, and the logarithm of the absolute value of its deviation 
from it is asymptotically normally distributed. Assuming only neutrality, the 
evolution of the exact mean and variance of the gene frequency are derived 
for an island with finite population. Selection is included in the diffusion 
approximation: if all evolutionary forces have comparable roles, the gene fre- 
quency will be normally distributed at all times. All results in the paper are 
completely explicit. 

RIGHT (1948) was the first to investigate the consequences of fluctuations 
win systematic evolutionary forces. KIMURA (1954) , JENSEN and POLLAK 
(1969), OHTA (1972), OHTA and KIMURA (1972), and JENSEN (1973) subse- 
quently explored the effects of random variation in selection intensities. GILLES- 
PIE (1978 and references therein) , HARTL and COOK (fully referenced in HARTL 
1977), KARLIN and LEVIKSON (1974), KARLIN and LIBERMAN (1974, 1975), 
LEVIKSON and KARLIN (1975) and AVERY (1977) have provided a detailed 
description of the dynamics of finite and infinite populations in random 
environments. 

If a population receives migrants at all, the rate of migration is extremely 
unlikely to remain constant for many generations. If the immigrants come from 
a panmictic population, but their number is small, the migrant gene frequency 
will fluctuate due to random sampling. It may also vary deterministically or 
stochastically if the gene frequency on the “continent” supplying the i”i- 
grants is not constant or if  the immigrants originate from different regions of a 
geographically diverse continent. Therefore, random fluctuations in the propor- 
tion and gene frequency of migrants are of considerable evolutionary interest. 

WRIGHT (1948) studied the island model (WRIGHT 1931) with randomly 
varying migration rate and migrant gene frequency. KIMURA (CROW and KIMURA 
1956) presented a formula for the distribution of the gene frequency in an 
infinite population in the diffusion approximation, assuming the absence of 
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selection, fixed migrant gene frequency, and random migration rate. Recently, 
SVED and LATTER (1977) derived a recurrence relation for the variance in gene 
frequency for the same process in a finite population. 

For analyses of a finite number of islands with deterministic migration, consult 

In Section I, we shall reconsider the problem examined by KIMURA (CROW 
and KIMURA 1956) , and show that his probability density should be divided by 2. 
Then we shall discuss the more difficult case including selection. We shall find 
the condition for a protected polymorphism for deterministically varying migra- 
tion rate and monomorphic migrants. The exact mean and variance of the fre- 
quency of a neutral allele in a finite population receiving migrants at a random 
rate with random gene frequency will be calculated in Section 11. In the follow- 
ing section, we shall deduce the diffusion approximation for the distribution of 
the gene frequency at any time with all evolutionary forces present. 

Let the alleles A, and A, segregate at the locus under consideration in a diploid 
panmictic population of actual size N and variance effective number Ne.  A,  and 
A, may refer, of course, to sets of selectively equivalent alleles. We denote the 
frequency of A, in generation t ( t  = 0, 1, 2, . . .) by the random variable Xt. 
Every generation a random fraction mt of the popuation is removed and replaced 
by immigrants with the random gene frequency &. We assume that mt and tt 
are stochastically independent for each t, and {mt} and {&} are sequences of 
independent identically distributed random variables. Although mutation could 
easily be included in the migration process, for simplicity of description we shall 
not do so. 

MARUYAMA (1970) andLATTER (1973). 

I. FLUCTUATING MIGRATION RATE IN A N  INFINITE POPULATION 

We suppose that the population is infinite, there is no selection and A,  has the 
fixed frequency t i n  the immigrants. Then 

so 

satisfies 

Zt+1= Zt + I t ,  ( 3 )  

where 

I, = -ln(l - mt) .  (4) 

From ( 3 )  we have 
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Denoting the mean and variance of I t  (both assumed to be finite) by 

I= E(Zt) and U; = Var ( I t ) ,  (6) 

we obtain from (5) and (6) 

E(&)  = 2, + it and Var (2,) = U: t. (7) 

Thus, both the mean and the variance of Z t  increase linearly. Since { I t }  is a 
sequence of independent identically distributed random variables, the Central 
Limit Theorem (FELLER 1971, p. 259) informs us that as t+w, the random 
variable 

Wt = (2, - 2, - I t )  (0; t )  -112 (8) 

is normally distributed with mean 0 and variance 1. 
From (2) and (8) we infer that the gene frequency converges to1 that of the 

immigrants as t+m, a conclusion we may draw for more general migration rates 
by appealing to the Law of Large Numbers in analyzing (5). 

Some care must be exercised in deriving OUT result from the diffusion approxi- 
mation. As (3) shows, the sequence { Z , }  is monotone increasing. But a sample 
path of a diffusion process at z at time T will enter both (-w,z) and (z ,m) with 
probability 1 during any time interval AT > 0 starting at time T, provided the 
diffusion coefficient is positive at z. To avoid this difficulty, we study Zt--E(Zt). 
Let e+O be a small positive parameter. We fixe the scaled time T = e t ,  and set 

UT = dF[zt - E ( Z t ) ] .  

Using ( 3 )  and (9),  we derive easily 

(9) 

where kt = I, - Therefore, as E+O the probability density of UT satisfies the 
heat equation, and we confirm the assertion following (8). 

U:, m and U; 
being the mean and variance of mt. This shows that KIMURA'S (CROW and 
KIMURA 1956) probability density should be divided by 2. 

For weak migration, (4) tells us that %+(l/2)4 and U; 

To include the effect of selection, suppose adults migrate. Then 

where X :  represents the frequency of AI after selection. The following argument, 
which applies equally well without selection, shows that a direct diffusion 
approximation of (1 1) is unlikely to be correct. For such an approximation, we 
require m = E and E(m:)  = E U .  Hence, invoking a special case of Schwarz's 
inequality (FELLER 1971, p. 155), we have 

E(m:) 2 [ E ( m , 2 ) I 2 / E ( m t )  =eu2 , 
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contradicting the sufficient condition 

for a diffusion. The reason for the failure is the non-negativity of the random 
variable mt. 

In  view of the above difficulty, we shall examine the discrete-time equation 
(1 1). If 0 < ( < 1, i.e., the immigrants carry both alleles, it is clear that the popu- 
lation remains polymorphic. Therefore, we assume that all immigrants are AzA2 
([ = 0) , and seek a sufficient condition for maintaining A, in the population. To 
avoid technicalities, we posit here that mt varies in an arbitrary, but determinis- 
tic, manner. 

If wt is the fitness of A,A, relative to that of A2A2, and ut = wt (1 - mt), as 
X t  -+ 0 (11) yields X t + l  - ut X t ,  whence 

t-1 xt-xo II u 
T=o T 

We infer that A,  is protected from loss if the geometric mean 

U* =( ; U > 1 
t 7=0 7 

for  sufficiently large t. We can rewrite (12) as 

1 t-1 
lnu* =- z lnu =E( lnu t )  > 0 

t t 7=0 7- 

for sufficiently large t. 
The protection conditions for deterministically ( HALDANE and JAYAKAR 1963) 

and randomly (KARLIN and LIBERMAN 1975) varying fitnesses without migration 
suggest that the last form of (13) should be valid with probability one, if the 
fitnesses and the migration rate are each sequences of independent identically 
distributed random variables. 

Expressing (1 3) in the form 

E(ln wt) > -E[ln (1 - mt)]  (14) 

leads to some interesting biological results, all of which are based on the fact that, 
by Jensen’s inequality (FELLER 1971, p. 153) and the concavity of In x, for any 
random variable Y 2 0, 

(15) 

with equality if and only if Var ( Y )  = 0 [provided the left-hand side of (15) 
exists]. 

For a fixed sequence {mt} of migration rates, (14) and (15) establish that 
variation in the fitness of the heterozygote relative to that of A2A2 decreases the 

E(1n Y )  5 l n E ( Y )  , 
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likelihood of polymorphism compared to constant selection with the mean relative 
fitness. Setting vt = l/wt, (14) becomes 

E(ln ut )  < E[ln ( 1  - m t ) ]  . (16) 

Thus, variation of the fitness of A,A, relative to that of A,A, decreases the 
stringency of the condition (16) for protecting A,. The first situation is exempli- 
fied by variable heterozygote and constant homozygote fitnesses; the second by 
the reverse. I t  is obvious from (14) that even without migration heterozygote 
fitness variation makes polymorphism less likely and homozygote variability 
more so. Consult NAGYLAKI (1977, pp. 68-71) for more detailed discussion. 

Since 

(14) restricts the fitnesses more severely than constant migration at rate my and 
still more than no migration. Therefore, variation in the migration rate decreases 
the chance for a protected polymorphism. 

With tot = 1 4- st, for weak selection and migration, ] s t /  < 1 and mt < 1, we 
obtain from (14) 

S -  (1/2) E (si) > G +  (1/2) E (m;), 

which should be compared to the lowest order protection criterion with constant 
selection and migration, s > m (NAGYLAKI 1977, p. 126). 

11. THE MEAN AND VARIANCE IN A FINITE POPULATION 

In this section, we shall calculate the exact mean and variance of the gene 
frequency in a finite population. We exclude selection, but allow both the migra- 
tion rate and the gene frequency in the immigrants to be random variables, as 
described in the last paragraph of the introduction. 

Let N ,  X t ,  and i = 2NXt be the number of adults, the frequency of A,, and 
the number of A, alleles at the beginning of generation t. These adults produce 
N* >> N zygotes without fertility differences. Next, migration alters the allelic 
frequency to XZ;. Finally, the population is reduced to N adults with gene fre- 
quency Xtil, the number of A, alleles being i = 2NXt+, .  Random drift with 
variance effective population number N e  occurs at this stage. 

Clearly, 

XZ; = (1 - mt)  X t  + mt t t  . (17) 

We denote by Ti* (m,t) the transition probabilities for the usual Wright-Fisher 
Markov chain for random drift with migration rate m and immigrant frequency 
t. If P(m,t) represents the joint probability density of mt and &, the transition 
probabilities for the Markov chain defined above read 

Rij =jT i j (m, t )  P(m, t )  dm&=E Tij(mt,f t ) l  * (18) 
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We shall require only the conditional means and variances 

E(Xt fl j Xt,mt,&) = X :  , 
Var (Xt+l  I Xt,mt,tt) = X: (1 - X:)/(2Ne) 7 

where X: is given by (1 7). 
For the mean gene frequency, (1 7) and (19a) give 

in which c= E ( & ) .  In the last step we relied on the postulated stochastic inde- 
pendence of nt, tt, and x,. The elementary recursion relation (20) has the 
solution 

where 8, = I,,. As expected for a linear problem, (21) is the same as the deter- 
ministic solution with parameters 6 and 

To compute the variance Vt = Var ( X , )  , we employ successively ( 19b), (1 7) , 
and the independence of mt, t,, and Xt: 

E(X,'+,> =ECE(X,'+, 1 Xt,mt,St)l 

=E{ [1-(2Ne)-'j (XT)'  + (2Ne)-'X:} 

= (2Ne)-'[ (1-G)X't + GZj 4 [1-(2Ne)-1j 

{[(l-G)z+ a;j(V,+Xf) +2F[[m(l-G) 

- u;]Z + (2 + U;) ( F  + $)} , 
in which U: = Var ( t t ) .  From (20) and (22) we deduce that 

4- (2A'e) -1[ ( I -G)X,+~~][1-  ( l - [ m ) X ~ - & ~ j ,  (23) 

with 

x = [ ( l  - + 0 - 3  [I - (2Ne)-1] . (24) 
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Substituting (21 ) into (24) produces the difference equation 

~ t + l  = A V ~  + [1-(2iv,)-llal(mz+o2,) ... + (~N~)-~Z(I-Z)  

+ (2Ne)-1(1-2F) (x,-S) (1-G)tf' 
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+ { U ~ - ( ~ N ~ ) - ~ [ ( I - G ) ~  + U:]} ( Z ~ - T ) ~ ( I - G ) ~ ~  . (25) 

Assuming that the initial gene frequency is xo, we have V ,  = 0. The solution 
of (25) is easily derived by combining a particular solution with the general 
solution of the corresponding holmogeneous difference equation, as explained in 
a general setting in NAGYLAKI (1977, p. 99). Defining 

we find 

Vt = P - (Q + b + c)At + b(1- G) + C( 1 - G)z t  . (27) 

If the immigrants originate from a large number of islands similar to the one 
under consideration, we expect xo = and Vt  = P( 1 - A t ) .  
SVED and LATTER (1977) have derived a recurrence relation for the variance with 
the additional assumption that ,ft is fixed. Their result differs from the special 
case of (25) with xo = and U; = 0 by small terms because in their model, in 
contradistinction to ours, random drift precedes migration. 

Since mt has mean m and 0 I mt I 1, therefore U: I G (1 - G) , from which 
we easily conclude that the equilibrium variance Q, given by (26a), is positive. 
As anticipated, (26a) shows that variation in the immigrant gene frequency 
raises the equilibrium variance. For an infinite population, (26a) reduces to 

whence xt = 

A a; (2 + a;) 
V =  - , N e =  W. 

1 - (1  - m)Z- uk 

A straightforward application of the inequalities U: I n (I-;) and U: 5 r( 1 -a 
proves that (28) is less than (26a). Thus, random drift conrtibutes to the vari- 
ance, as it must. Note that with N e  = and a2, = 0, (28) tells us that $'= 0, 
i.e., the gene frequency converges to 5 (= s) . A much less obvious consequence 
of the upper bounds on U; and U: is that variation in the migration rate increases 
the equilibrium variance in the gene frequency. 
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Since (24) implies that 

h I (1 -E!) [l - (2Ne)-1] , 

(27) informs us that the ultimate rate of convergence of the varlmce is (1 - 6) $, 

the same as that of the mean. 

If migration is weak, 6 << 1, and the effective population number is large, 
N e  >> 1, our results simplify considerably to 

Vt  z $' - (i.'+b+c) exp {- [~G-U;~+ (2Ne)-l] t }  

+ b exp (-6t) + c exp (-2%). ( 3 W  

We can specialize immediately ow solution to mutation and random drift in a 
2, and 

= U + U, where U and v are the mutation rates from A,  to A,  and A,  to AI, 
finite population. With the substitutions U;= U;,= 0, z= v/(u + U )  

respectively, (21), (24), (26), and (27) becolme 

% = f +  ( x o - f ) ( l  - u - v ) t  , (314 

f(1 - 2 )  

(1 - 2f)  (x, - 2) 

V =  2Ne- ( 2 N e - 1 ) ( 1 - U - u ) ~  ' 

1 + (2Ne- 1 ) T U i  ' b= 

Vt =$'- (Q+ b+c)Xt  + b(1 - U -  u ) ~  + ~ ( l  - U -  u ) * ~  . . (31f) 

For weak mutation, U f U < < 1, (31 b) is well approximated by WRIGHT'S ( 193 1 ) 
formula, 

A f ( 1 - 2 )  
V =  

1 + 4 N e ( u  + v) ' 
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For irreversible mutation from A, to A, at rate U (U = 0) , (31) reduces to 

xt = z o ( l  - U ) t  , (324 

xo b =  
1 + u ( 2 N e - 1 )  ' 

x = ( 1  - u)2[1- (2Ne)-l] , (32c) 

(32d) Vt = (xt- b)Xt + b(1 - U ) t  - xi(1 - U ) Z t  , 
demonstrating that the variance converges to zero as A,  is lost. Finally, for pure 
random drift (U = 0) , (32) yields WRIGHT'S (1931) class results, Et = xo and 

111. T H E  DIFFUSION APPROXIMATION IN A FINITE POPULATION 

We shall derive the distribution of the gene frequency in the diffusion approxi- 
mation with selection, random drift, and migration at a random rate with random 
gene frequency all present. We modify the life cycle of SECTION 11 by including 
selection, and summarize the pertinent information in the formal scheme below. 

Adult -+ Zygote - Adult --+ Adult - Adult 
reproduction selection migration regulation 

N,Xt  N*,Xt  N* * ,Xz  N* * *,Xy * N,Xt  +i 

We assume that N * ,  N * * ,  N*** all greatly exceed N .  If we parametrize the 
constant fitnesses of AIAl, A,A,, and A,A, by 1 + s, 1 + hs, and 1 - s, so that 
s ( - 1  5 s I 1 )  represents the selection intensity and h (-" < h < ") deter- 
mines the degree of dominance, then the gene frequency after selection reads 

x: = X t  + S S ( X t )  + O ( S 2 )  , 

S(z) = x ( 1  - x) ( 1  + h - 2hx) 

x f * = x ; + m t ( & - X t ; )  

(33 )  

(34) 

where 

. 
Migration changes this to 

= X t  + SS(Xt )  + mt(& - X t )  + O(s*,smt) . (35) 
We still define our Markov chain as in ( 1 8 ) ,  but Til now includes selection. The 
conditional mean and variance are 

I X t ,  m t ,  t t )  = X : *  , (36a) 

(36b) 

where XT* is given by (35). 
For a diffusion limit with all evolutionary forces playing a role to apply, the 

various parameters must be appropriately related to each other and to intrinsic 

Var ( X t + l  I X t ,  mt, tt) = X f * ( l -  X f *  ) / @ N e )  , 
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time scale of the process. These relations may be deduced systematically fro" the 
expectation of the change and squared change in gene frequency in a generation 
as follows. These expectations, MO (x) and Vo (z), will yield directly the drift and 
diffusion coefficients, M ( x )  and V(x). 

From (36a) and (35) weobtain 

M , ( z )  = E ( X t + l  - x, 1 x, = z) 

= E[E(X,+1- X t  1 mt, t t ,  xt = x> 1 
=E(X;* - X t  I X,=x) 
= sS(z) + &@ - x) + o(sz,sG) . 

Using (36), (35), and the fact that U:?& 5 ;(I - G) I m, we find 
Vo(z) 3 E [ ( X t + , -  x,)z I x1= zl 

= E { E [  (Xt+1-X;*)2 + <x;* - Xt) '  

+ 2(X,+,  - x;*> ( X $ *  - X , )  I 7% t,, X t  = X I >  

= E [ X ; * ( l - X ; * ) ( 2 N e ) - ' +  (X:*-xt)'IXt=zl 

= z(1 - 2) (2Ne)-1+ (2 + 0;) [U; + (Z- 2)'l 
- -  - + 2 s m  ([ - x) s (2) + 0 ( s N ~ l , m N ~ ~ , s 2 , s m * , s o ~ ~ )  . (37b) 

In the diffusion limit, we require M o ( z )  -+ 0 and V,(z) + 0. Hence, (37) implies 
that selection and migration must be weak, Is 1 < < 1 and n < < 1 , and the eff ec- 
tive population number large, Ne > > 1. We introduce a small positive parameter 
E by scaling the time as T = et. Then diffusion time T of order 1 corresponds to 
many generations, leading us to expect predominantly gene frequencies close 
to Therefore, we may reasonably posit the parameter scalings 

- 
m = e a ,  s = BEP U: = C E ~ ~ ,  N ,  = V E Y ,  (38a) 

Y, = ( X ,  - ( D e y  - y* . (38b) 

and employ the diffusion variable 

We shall determine a, p, y, 6, D, and y* ; then B, C, and v will be given in terms 
of s, .ai, Ne,  and m by (38a). In view of the discussion above, we assume that 
a, p ,  y, 6, V ,  and D are all (strictly) positive and C 2 0. We suppose also that 
U; > 0 (which implies, of course, 0 < $ < 1 )  ; this essential restriction to variable 
immigrant gene frequency a c m t s  for the simplicity of OUT results, as well as 
their deviation from standard random drift theory. 

Since X t  is close to2  with high probability, we expand S(z) in (37) in a Taylor 
series near z =x. Inserting (38) into (37a) yields 
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where 
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y = (5 - g)  DE^)-' - y*. (40) 

The constant drift in (39) will be eliminated as E + 0 if and only if 

p = 01 + 6 and y* = BS(c) /D.  (41 1 
In that case (39) becomes 

MO (z) = - m y  + 0 ( E D ) .  

Observe that with the choice p = 01 + 8 the migration and selection terms in (39) 
are of the same order of magnitude. 

Substituting (38) and (41) into (37b) leads to 

V,(z)  = &7(2v)-1?(14) + &2%;(l+c) + 0 ( E 2 ~ , E 2 a + ~ , E a + r y E ~ + - Y , E ~ + ~ ) .  (43) 

Random drift and variation in the migrant frequency will be of the same order of 
magnitude if and only if 

y = 201, (44) 

which reduces (43) to 

V,(z)  =&q-(2v)-q(I - ,g  +u,Z(l+C)] + O ( E Y ) .  ‘45) 

With the aid of (42) and (45), we can compute at once the drift and diffusion 
coefficients, M ( x )  and V ( z ) .  We have from (38b) and (42) 

M (s) = lim E - ~  E (  Y7+& 8- Y7 I Y ,  = y )  
&+ 0 

= lim ( D E l + y  E ( X , + ,  - X t  1 X t  = z) 
E+ n 

- -y, 
- 

provided 

/ 3 = 1 + 6 .  

Similarly, (38b) and (45) yield 

V ( s )  = lim E - ~  E [  (Y,+E - Y,)2 1 Y, = y] 
&+ I1 

= lim (Dz~1+26)-1Vo(s)  
E+ 0 

= 1, 

if  and only if 

y=.1  +26 and D =  [(2v)-lg(l  -8 + U , ~ ( I + C ) ] ~ / ~ .  

(46) 

(47) 

(48) 

(49) 
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Equations (41) and (49) determine y* and D. Solving (41), (44): (47), and 
(49) gives (Y = 1, p =  3/2, y = 2, and 6 = 1/2. Therefore, (38) takes the form 

- 
Since m + 0, (50b) shows that the range of the diffusion is --CO < y < m. Hence, 
(46) and (48) give the Omstein-Uhlenbeck process with transition probability 
density ( Y o  = yo)  

(FELLER 1971, p. 335). 
Thus, Y, is normally distributed with mean yoe-T and variance (1 - e-?~)/2. 

The equilibrium distribution is Gaussian with mean 0 and variance 1/2. Conse- 
quently, the gene frequency, X t ,  is normally distributed with mean 

E ( X t )  =S+ (z,, - Ge-Kt  + ( s / i ) ~ ( S )  ( I  - e+) (524 

and variance 

These have equilibrium values 

and 

Var (x,) (53b) 

Note that in this approximation the only effect of selection is to shift the mean 
by the last term in (52a).  Only the selective force at z = enters. The effective 
population size and variation in the migration rate and immigrant gene frequency 
da not influence the mean gene frequency. Finite effective population size and 
variation in the migration rate and immigrant gene frequency each increase the 
equilibrium variance, D2;/2, of the gene frequency, as proved exactly in 
SECTION 11. If U; = 0 or Ne = a, we set C = 0 or v = m ,  respectively, in (49). 

Although we utilized the condition 025 > 0 in deriving o u r  solution, the limit 
U: + 0, affecting only D in (49), is well behaved and quite instructive. Supposing 
that there is no selection (s = 0) and changing to the mutation interpretation 
above (31), we obtain FELLER’S (1951; note two obvious misprints) Gaussian 
limit for mutation and random drift. This happens because (50a) implies 
Ne; + 00, precisely Feller’s assumption. 

WRIGHT (1948) gave a formula for the equilibrium distribution of the gene 
frequency on an island with an infinite population, a fixed migration rate and no 
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dominance. Without selection, his result agrees exactly with the equilibrium 
limit (53) of ours. In the presence of selection, his distribution is not normal; if 
the required relations (50) are imposed on it, however, it simplifies in the 
diffusion limit to a noIrma1 distribution with mean and variance given by (53). 

Finally, using (49) and (50), it is easy to show that in the absence of selection 
(52) agrees with the diffusion limit of the discrete solution (30). 

S U M M A R Y  

We investigated various cases of the island model with stochastic migration. 
If the population is infinite, the immigrants have a fixed gene frequency and the 
alleles are neutral, the gene frequency on the island converges to that of the 
immigrants. As exhibited in (8), the logarithm of the absolute value of the 
deviation of the gene frequency from the immigrant gene frequency is nolrmally 
distributed for long times. If there is selection, but both migration and selection 
vary deterministically and all immigrants are A&, A ,  will be protected from 
loss if for sufficiently long times the geometric mean of the sequence { wt ( l -mt)  } 
(where wt denotes the fitness of A,A, relative to that osf A2Az and mt represents 
the migration rate) exceeds 1. Variation in the migration rate or in the heterozy- 
gote fitness decreases the likelihood of maintaining polymorphism; variation in 
the fitness of A,A, increases it. 

We calculated exactly the mean and variance of the gene frequency in the 
absence of selection for a finite population with random migration rate and 
immigrant gene frequency. See (21) and (27) for the exact results and (30) for 
a useful approximation. Finiteness of the population size and variation in the 
migration rate and immigrant gene frequency all increase the equilibrium 
variance of the gene frequency. An application of these results is the solution 
(31) for the exact mean and variance of the gene frequency with mutation and 
random drift. 

If all evolutionary forces have comparable roles, the gene frequency in the 
diffusion approximation will be nolrmally distributed at all times, as shown by 
(51), with the mean and variance appearing in (52). In this approximation, 
only the selection pressure at the average gene frequency of the immigrants 
matters, and its only effect is to shift the expected gene frequency. 

I am grateful to STEWART ETHIER for helpful discussions and comments on the manuscript. 
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